Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal, like the final fitness values of multiple trials. For many benchmarks, however, a trial can also terminate once it reaches a pre-specified target value. When only some trials reach the target value, two variables characterize a trial's outcome: the time it takes to reach the target value (or not) and its final fitness value. This paper describes a simple way to impose linear order on this two-variable trial data set so that traditional non-parametric methods can determine the better algorithm when neither dominates. We illustrate the method with the Mann-Whitney U-test. A simulation demonstrates that U-scores are much more effective than dominance when tasked with identifying the better of two algorithms. We test U-scores by having them determine the winners of the CEC 2022 Special Session and Competition on Real-Parameter Numerical Optimization.
translated by 谷歌翻译
传播相位对比度同步同步rotron MicrotoMography(PPC-SR $ {\ mu} $ CT)是对考古遗骸内部结构的非侵入性和非破坏性访问的黄金标准。在该分析中,需要分割虚拟标本以分开不同的部件或材料,通常需要相当多的人力努力的过程。在MicrotoMograph成像(ASEMI)项目的自动分割中,我们开发了一种自动分割这些容量图像的工具,使用手动分段样本来调谐和培训机器学习模型。对于一套四个古埃及动物木乃伊标本,与手动细分切片相比,达到了94-98%的整体准确性,使用深度学习(97-99%)接近现货商业软件的结果较低的复杂性。对分段输出的定性分析表明,我们的结果在对来自深度学习的人的可用性方面接近,证明了这些技术的使用。
translated by 谷歌翻译
间接歧视是算法模型中主要关注的问题。在保险定价中尤其如此,不允许使用保护保单持有人特征进行保险定价。简单地忽略受保护的保单持有人的信息不是一个适当的解决方案,因为这仍然允许从非保护特征中推断出受保护特征的可能性。这导致所谓的代理或间接歧视。尽管代理歧视在质量上与机器学习中的集体公平概念不同,但提出了这些群体公平概念,以“平滑”受保护特征在计算保险价格中的影响。本说明的目的是根据保险定价分享有关团体公平概念的一些想法,并讨论其含义。我们提出了一个没有替代歧视的统计模型,因此从保险定价的角度来看,没有问题。但是,我们发现该统计模型中的规范价格无法满足三个最受欢迎的集体公正公理中的任何一个。这似乎令人困惑,我们欢迎对我们的示例和这些集体公正公理对非歧视性保险定价的有用性的反馈。
translated by 谷歌翻译
This paper presents a novel way to apply mathematical finance and machine learning (ML) to forecast stock options prices. Following results from the paper Quasi-Reversibility Method and Neural Network Machine Learning to Solution of Black-Scholes Equations (appeared on the AMS Contemporary Mathematics journal), we create and evaluate new empirical mathematical models for the Black-Scholes equation to analyze data for 92,846 companies. We solve the Black-Scholes (BS) equation forwards in time as an ill-posed inverse problem, using the Quasi-Reversibility Method (QRM), to predict option price for the future one day. For each company, we have 13 elements including stock and option daily prices, volatility, minimizer, etc. Because the market is so complicated that there exists no perfect model, we apply ML to train algorithms to make the best prediction. The current stage of research combines QRM with Convolutional Neural Networks (CNN), which learn information across a large number of data points simultaneously. We implement CNN to generate new results by validating and testing on sample market data. We test different ways of applying CNN and compare our CNN models with previous models to see if achieving a higher profit rate is possible.
translated by 谷歌翻译
In this paper we explore the task of modeling (semi) structured object sequences; in particular we focus our attention on the problem of developing a structure-aware input representation for such sequences. In such sequences, we assume that each structured object is represented by a set of key-value pairs which encode the attributes of the structured object. Given a universe of keys, a sequence of structured objects can then be viewed as an evolution of the values for each key, over time. We encode and construct a sequential representation using the values for a particular key (Temporal Value Modeling - TVM) and then self-attend over the set of key-conditioned value sequences to a create a representation of the structured object sequence (Key Aggregation - KA). We pre-train and fine-tune the two components independently and present an innovative training schedule that interleaves the training of both modules with shared attention heads. We find that this iterative two part-training results in better performance than a unified network with hierarchical encoding as well as over, other methods that use a {\em record-view} representation of the sequence \cite{de2021transformers4rec} or a simple {\em flattened} representation of the sequence. We conduct experiments using real-world data to demonstrate the advantage of interleaving TVM-KA on multiple tasks and detailed ablation studies motivating our modeling choices. We find that our approach performs better than flattening sequence objects and also allows us to operate on significantly larger sequences than existing methods.
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译